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ABSTRACT OF THE DISSERTATION

Electronic Properties Modeling of Two-Dimensional Materials

by

Kuan Zhou

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2018

Dr. Roger K. Lake, Chairperson

Two-dimensional materials including graphene and transition metal dichalcogenides

semiconductors are of tremondous interest for potential electronic applications because of

their electronic properties and rich physics. In this work, using tight binding models, first

principle calculation and non equilibrium Green’s function(NEGF) simulations, interlayer

resistance of misoriented MoS2, electronic properties of tetralayer graphene and edge states

of trilayer graphene nanoribbons are successively studied.

In transition metal dichalcogenides like MoS2, interlayer misorientation alters the

interlayer distance, the electronic bandstructure, and the vibrational modes, but, its effect

on the interlayer resistance is not known. We analyze the coherent interlayer resistance of

misoriented 2H-MoS2 for low energy electrons and holes as a function of the misorientation

angle. The electronic interlayer resistance monotonically increases with the supercell lattice

constant by several orders of magnitude similar to that of misoriented bilayer graphene.

The large hole coupling gives low interlayer hole resistance that weakly depends on the

misorientation angle. Interlayer rotation between an n-type region and a p-type region

vii



will suppress the electron current with little effect on the hole current. We also estimate

numerical bounds and explain the results in terms of the orbital composition of the bands at

high symmetry points. Density functional theory calculations provide the interlayer coupling

used in both a tunneling Hamiltonian and a non-equilibrium Green function calculation of

the resistivity.

In multilayer graphene, as the Fermi level and band structure are readily tunable,

they constitute an ideal platform for exploring the Lifshitz transition, a change in the

topology of a material’s Fermi surface. In tetralayer graphene that hosts two intersecting

massive Dirac bands, we provide numerical analysis of multiple Lifshitz transitions and

multiband transport, which is manifest as a nonmonotonic dependence of conductivity on

the charge density n and out-of-plane electric field D, anomalous quantum Hall sequences

and Landau level crossings that evolve with n, D, and B.

Lastly, due to mirror symmetry the bands of ABA stacked trilayer graphene can

be identified by their parity with respect to mirror symmetry. The even parity bands

exhibit gapped bilayer graphene-like dispersion, while the odd parity bands exhibit a gapped

graphene-like dispersion. Using a tight binding model with Slonczewski-Weiss-McClure

parameters, we look at the edge states in trilayer graphene nanoribbons in the quantum

hall regime. When mirror symmetry is preserved, the system exhibits quantized longitudinal

conductance at charge neutrality point, due to counterpropagating even and odd parity edge

modes. We study the effects of perpendicular electric field and magnetic field and mirror

symmetry breaking disorder on the band structures and longitudinal conductance.
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Chapter 1

Motivation

1.1 Background and objective

Moore’s law proved accurate for several decades, and has been used in the semicon-

ductor industry to guide long-term planning and to set targets for research and development.

However, recently the down-scaling of metal oxide semiconductor (MOS) field effect transis-

tors (MOSFETs) has become limited by short channel effects. Two-dimensional materials

including graphene and transition metal dichalcogenides(TMDs) have become one of the

most promising materials as next generation semiconductors [4].

Besides the high electron mobility and exceptional mechanical properties, one of

the most interesting aspects of graphene is that its low energy excitations are massless, chi-

ral Dirac fermions, which can lead to an anomalous integer quantum Hall effect(IQHE) if

subjected to magnetic fields [5] and many other interesting electronic properties [6]. Mono-

layer and bilayer graphene have weak spin-orbit coupling and do not exhibit a significant

band gap. Much research has focused on band structure engineering in multilayer graphene
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systems [7, 8]. The band structure of two-dimensional materials are readily tunable, and

the electronic properties of multilayer graphene are quite exciting to explore.

Because of the significant band gap and spin orbit coupling, two dimensional tran-

sition metal dichalcogenides(TMDs) such as MoS2 have gained enormous attention [9].

Multilayer and heterostructure stacks of transition metal dichalcogenides exhibit strong

spin orbit coupling and non-trivial topology [10, 11, 12], large Seebeck coefficients [13],

tunable bandstructure [14, 15], many possibilities for band engineering [16], type II band

alignments [17, 18, 19], and rectifying pn junctions [17, 19, 20]. For TMD misoriented bilay-

ers, both experiments and simulations show that the interlayer coupling and the interlayer

distance are sensitive to the rotation angle, and that the sensitivity of the coupling is very

different for different valleys. Thus it is crucial to explore the effect of misorientation on

the interlayer resistivity of TMDs.

Thus the objective of the work here is to provide insights into the electronic prop-

erties of two dimensional materials including misoriented MoS2 and multilayer graphene,

and guidelines for future experiments.

1.2 Layout

The research is focused on two specific types of materials: multilayer graphene

and misoriented MoS2. The topics include band structure, orbital analysis, landau levels,

topology analysis and transport calculations. Chapter 2 presents the theoretical methods

and models, such as the tight binding model, the basics of density functional theory(DFT),

and transport calculations. In Chapter 3, first principle calculations, orbital analysis and
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transport calculations are used to study the dependence of interlayer resistance on rotation

angles of misoriented MoS2; In Chapter 4, tight binding models, Landau level calculations

and Boltzmann transport theory are used to study the tunable Lifshitz transitions and

multiband transport in tetralayer graphene; In Chapter 5, a tight binding model with

electric field and magnetic field is used to analyze the properties of edge states of trilayer

graphene nanoribbons and counterpropagating quantum mirror hall states . Finally, in

Chapter 6 we summarize the key findings of these work.
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Chapter 2

Theoretical Methods

This chapter introduces basics of the theoretical methods used in this dissertation

including density functional theory(DFT), tight binding models and transport calculations.

2.1 Basics of density functional theory

Density functional theory has long been the mainstay of electronic structure cal-

culations in solid-state physics. This is because approximate functionals were shown to

provide a useful balance between accuracy and computational cost. DFT is not just an-

other way of solving the Schrodinger equation. Nor is it simply a method of parametrizing

empirical results. Density functional theory is a completely different, formally rigorous, way

of approaching any interacting problem, by mapping it exactly to a much easier-to-solve

non-interacting problem [21].

To start with, consider a complex system of electrons and nuclei, the Hamiltonian

will be:
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H = T + Vext + Vint + Enn (2.1)

where T is the electronic kinetic energy, Vext is the potential due to the electron-nuclei inter-

actions, Vint is the potential due to electron-electron interactions and Enn is the interaction

between nuclei. In DFT, the many-electron wavefunction problem could be approximated

and solved in practice. The first Hohenberg-Kohn theorem proves that the ground-state of

a many-electron system can be uniquely determined by the electron density of the system.

The second Hohenberg-Kohn theory states that the total ground-state energy of such a

many-electron system is a functional of the ground-state electron density [22]. Thus the

Hamiltonian can be rewritten as a functional of the density n:

E(n) = T (n) +

∫
d3rVext(r)n(r) + Eint(n) + Enn (2.2)

where T (n) is the kinetic energy, Vext is the potential acting on the electrons from the nuclei,

Eint(n) is the interaction energy of electrons and Enn is the interaction between nuclei.

To further make the many-electron problem trackable, the Kohn-Sham approach

replaces the many-body electron wave function with a non-interacting system in an effec-

tive potential that has a ground state density that is identical to that of the many body

interacting system [23]. The effective Hamiltonian of the non-interacting particles in the

Kohn-Sham becomes:

VKS(r) = Vext(r) + VH(r) + VXC(r) (2.3)
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where Vext is the external potential acting on the electrons due to the nuclei defined as:

Vext(r) =
∑
n

−Zne
| rn − re |

(2.4)

where Zn is the nuclear charge and rn is the position of the nuclei. VH(r) is the Hartree

potential given by:

VH(r) =

∫
ρ(r)

| r − re |
dr (2.5)

VXC(r) is the exchange-correlation potential which includes electron-electron interactions

not included in the Hartree potential.

Two common approaches to approximate the exchange correlation potential in-

clude the Local Density Approximation (LDA) and the Generalized Gradient Approxima-

tion (GGA). The main rationale behind these approximations is that for electron densities

within a solid, exchange and correlation effects occur on a short length scale. Hence, LDA

and GGA approximations of DFT accurately describe the properties of materials that re-

semble a homogeneous electron gas.

2.2 Tight binding model of multilayer graphene

Graphene is made out of carbon atoms arranged in hexagonal structure. The

structure can be seen as a triangular lattice with a basis of two atoms per unit cell. There

are already many excellent articles covering tight binding modeling of monolayer and bilayer

graphene [6]. Here we focus on tight binding model of multilayer graphene systems including

tetralayer graphene and trilayer graphene nanoribbons.
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2.2.1 Parameter settings

In order to describe the bands of multilayer graphene, we adopt the standard

Slonczewski-Weiss-McClure parametrization of the tight-binding model [3, 24].

Figure 2.1: Schematic view of the lattice structure of the ABA-stacked trilayer graphene
(left) and values of corresponding tight-binding parameters[3].

Take trilayer graphene as an example, six tight-binding parameters γ0...γ5 describe

hopping matrix elements between different atoms:

Ai ↔ Bi : γ0,

B1,3 ↔ A2 : γ1,

A1 ↔ A3 :
1

2
γ2,

A1,3 ↔ B2 : γ3,

A1,3 ↔ A2 : −γ4,

B1,3 ↔ B2 : −γ4,

B1 ↔ B3 :
1

2
γ5,

(2.6)

where Ai(Bi) refers to an atom from the A(B) sublattice, and index i = 1...3 labels different

layers. In addition, parameter δ accounts for an extra on-site potential for B1, A2, and
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B3 sites, which are on top of each other. Moreover, parameter ∆1 is responsible for the

potential difference between top and bottom layers which is caused by the application of

the displacement field to the sample. Parameter ∆2 describes the deviation of potential on

the middle layer from the mean of the potentials on the top and bottom layers.

2.2.2 Tetralayer graphene

In ABAB stacked tetralayer graphene, the Hamiltonian in the vicinity of the Kξ

valley is:

H =



eD·d
2 vπ† −v4π

† v3π
γ2
2 0 0 0

vπ δ + eD·d
2 γ1 −v4π

† 0 γ5
2 0 0

−v4π γ1 δ + eD·d
6 vπ† −v4π γ1

γ5
2 0

v3π
† −v4π vπ eD·d

6 v3π
† −v4π 0 γ2

2

γ2
2 0 −v4π

† v3π − eD·d
6 vπ† −v4π

† v3π

0 γ5
2 γ1 −v4π

† vπ δ − eD·d
6 γ1 −v4π

†

0 0 γ5
2 0 −v4π γ1 δ − eD·d

2 vπ†

0 0 0 γ2
2 v3π

† −v4π vπ − eD·d
2



(2.7)

where the D is the vertical electric field and d is the thickness of tetralayer graphene. And

ξ = ±1 is the valley index and π = ξpx + ipy is the momentum operator. Fermi velocity of

graphene v =
√

3aγ0
2h̄ , and related velocities v3 = γ3

γ0
v, v4 = γ4

γ0
v.

For Landau level calculation, a new set of basis will be used with base wave

functions:

8



|φ1〉 = (0, |0〉, 0, 0, 0, 0, 0, 0),

|φ2〉 = (0, 0, 0, |0〉, 0, 0, 0, 0),

|φ3〉 =
1√
2

(|n〉, |n+ 1〉, 0, 0, 0, 0, 0, 0),

|φ4〉 =
1√
2

(0, 0, |n〉, |n+ 1〉, 0, 0, 0, 0),

|φ5〉 =
1√
2

(|n〉,−|n+ 1〉, 0, 0, 0, 0, 0, 0),

|φ6〉 =
1√
2

(0, 0, |n〉,−|n+ 1〉, 0, 0, 0, 0),

|φ7〉 =
1√
2

(0, 0, 0, 0, 0, |0〉, 0, 0),

|φ8〉 =
1√
2

(0, 0, 0, 0, 0, 0, 0, |0〉),

|φ9〉 =
1√
2

(0, 0, 0, 0, |n〉, |n+ 1〉, 0, 0),

|φ10〉 =
1√
2

(0, 0, 0, 0, 0, 0, |n〉, |n+ 1〉),

|φ11〉 =
1√
2

(0, 0, 0, 0, |n〉,−|n+ 1〉, 0, 0),

|φ12〉 =
1√
2

(0, 0, 0, 0, 0, 0, |n〉,−|n+ 1〉),

(2.8)

The total Hamiltonian in this new basis can be used to calculate bands. Typically, maxima

number of Landau levels N considered could be about 50 or changed accordingly.

2.2.3 Trilayer graphene nanoribbon in electric and magnetic field

For tight binding calculation of trilayer graphene nanoribbons, in order to simulate

both zigzag and armchair edges in an united framework, a rectangular unit cell with atoms

{A1, B1, A2, B2, A3, B3, A
′
1, B

′
1, A

′
2, B

′
2, A

′
3, B

′
3} is chosen as shown in the figure.
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Figure 2.2: Rectangular unit cell figuration for tight binding calculation of trilayer nanorib-
bons.

In the absence of external electric field, the band structure of the trilayer graphene

consists of monolayer-like and bilayer-like bands [25]. And the Hamiltonian can be decou-

pled to even and odd parity bands in a new basis [3] of

{A1 −A3√
2

,
B1 −B3√

2
,
A1 +A3√

2
, B2, A2,

B1 +B3√
2

,
A
′
1 −A

′
3√

2
,
B
′
1 −B

′
3√

2
,
A
′
1 +A

′
3√

2
, B2, A2,

B1 +B3√
2
}

(2.9)

To calculate the bands, the total Hamiltonian matrix is divided into small parts

as αu, β0, β1, β2 and t, which are Hamiltonians of unit cell blocks and interactions be-

tween blocks. For different nanoribbon edges, different α(Hamiltonian of supercell) and

β(interations between supercells) are constructed accordingly. In order to decouple even

and odd parity bands when no electric field is applied, a transformation matrix M is used

to change the basis. Finally, the Hamiltonian is H(k) = α+ β
′
e−ka + βeka.

With applied perpendicular B-field (0, 0, Bz), a vector potential (−Bzy, 0, 0) or

10



Figure 2.3: Demonstration of different elements of the tight binding Hamiltonian.

(0,−Bzx, 0) is used accordingly based on the edge. The Peierls phase factor and the inter-

actions will be calculated accordingly using:

2.3 Basics of transport calculation

The transport calculation methods covered here include 2D tunneling, low energy

non-equilibrium Green function and Boltzmann transport theory. The basics are presented

here, and more details will be covered in next chapters.
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2.3.1 Standard 2D-2D tunneling formula

In transport calculations for low energies near a given valley minimum, the stan-

dard 2D-2D tunneling formula is

J =
gsgvq

hA
∑
k

∫
dE |t⊥(k)|2Au(k;E)Al(k;E)

· [f(E − Ef,u)− f(E − Ef,l)] (2.10)

where Au(k;E) is the spectral function of the upper layer, Al(k;E) is the spectral function

of the lower layer, t⊥(k) is the interlayer coupling which can be determined from the band

splitting, f(E − Ef ) is the Fermi-Dirac factor, and Ef,u(l) is the Fermi level of the upper

(lower) layer. In the prefactor, A is the area, gs is the spin degeneracy, and gv is the valley

degeneracy. The spectral functions are given by Au(l) = γ

(E−ε(k))2+ γ2

4

= γ

E2
z+ γ2

4

where γ is

the lifetime broadening in each layer and in the second equality, we define Ez ≡ E − ε(k).

Since the interlayer coupling t⊥ is usually a weak function of k in van der Waals(Vdw) 2D

materials, we could use its value at the band edge. Then, we can perform the sum over the

transverse momenta analytically, and Eq. (2.10) now has the form

J =
gsgvq

h

m∗

2πh̄2

∫
dEz|t⊥|2Au(Ez)Al(Ez)

·
∫ ∞

0
dε [f(Ez + ε− Ef,u)− f(Ez + ε− Ef,l)] (2.11)

For small voltages, the difference in Fermi factors becomes −∂f∂ε qV where V is the applied

voltage, and the integral over ε gives f(Ez−Ef )qV where Ef is the equilibrium Fermi level.

Therefore, the 2D-2D tunneling formula for the interlayer conductivity for low energies is

σ2D =
gsgvq

2

h

m∗

2πh̄2

∫
dEz
|t⊥|2γ2f(Ez − Ef )[

E2
z + γ2

4

]2 . (2.12)
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2.3.2 Low energy non-equilibrium Green function

In transport calculations for strongly coupled bands, a low-energy, 3D-3D trans-

mission model could be used. Physically, this corresponds to a system of two semi-infinite

stacks. For each band, at each transverse k, this model reduces to that of a one dimensional

(1D) tight-binding chain. Here we can take misoriented MoS2 as an example as shown in

Fig. 3.1(b). The hopping parameter t0 is given by t⊥ of the unrotated bilayer. For this

model, the ‘device’ consists of the two misoriented layers numbered 0 and 1 in Fig. 3.1(b).

The left and right self-energies due to coupling to the semi-infinite leads are ΣR = t0e
ikza.

The Green function is

GR =

E − εν(k)− t0eikza −tν⊥(k)

−tν⊥(k) E − εν(k)− t0eikza


−1

. (2.13)

The transmission is calculated from T (E,k) = ΓuΓl|GR0,1(E,k)|2 where Γl = Γu = 2|t0| sin(kza).

Using the dispersion relation of the leads, E = εν(k) + 2t0 cos(kza), this can be analytically

evaluated to obtain T (Ez) =
t2⊥(4t20−E2

z )

(t20+t21)2−t2⊥E2
z

where Ez ≡ E − εν(k). Going through the same

steps as for the 2D-2D tunneling formula, the 3D-3D expression for the conductance is

σ3D =
gsgvq

2

h

m∗

2πh̄2

∫ 2t0

−2t0

dEz
t2⊥(4t20 − E2

z )f(Ez − Ef )

(t20 + t2⊥)2 − t2⊥E2
z

. (2.14)

In all calculations of the interlayer conductance, the Fermi level is taken to be kBT below

the conduction band edge when calculating the electron conductance or kBT above the

valence band edge when calculating the hole conductance, with T = 300K.
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2.3.3 Boltzmann transport theory

In Boltzmann transport theory, the conductivity can be written as a sum of intra-

band and interband contributions [26]:

σxxintra = e2τ
∑
n

∫
BZ

1

(2π)2
dθkdk|〈nk| ∂H

∂kx
|nk〉|2(−∂fnk

∂εnk
) (2.15)

σxxinter = ie2h̄
∑
n,m 6=n

∫
BZ

1

(2π)2
dθkdk

fmk − fnk
εnk − εmk

〈nk| ∂H∂kx |mk〉〈mk| ∂H∂kx |nk〉
εnk − εmk + ih̄τ−1

(2.16)

where the εnk and fnk are the energy and Fermi-Dirac distribution function of band n with

wave vector k. Usually we can treat the relaxation time τ as an independent parameter and

assume that τ is the same for both intraband and interband scattering mechanisms [26].
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Chapter 3

Interlayer Resistance of

Misoriented MoS2

3.1 Introduction

For transition metal dichalcogenides(TMD) misoriented bilayers, both experiments

and simulations show that the interlayer coupling and the interlayer distance are sensitive

to the rotation angle, and that the sensitivity of the coupling is very different for different

valleys [27, 28, 29, 30, 31]. A small rotation angle in hetero-bilayers alters the inter-layer

exciton dynamics [32, 33]. While the effects of misorientation on the geometry, electronic

bandstructure, and vibrational modes of bilayer TMDs have received significant attention,

the effect of misorientation on the interlayer resistivity of TMDs has not yet been studied.

Recent work considered the effect of misorientation on the in-plane transport [34]. In

this work, we theoretically determine the coherent electron and hole interlayer (vertical)
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Figure 3.1: (a) Atomistic geometry of the 21.78◦ rotated interface. The semi-transparent ar-
row indicates the direction of current flow. (b) Reduction to a tight binding chain model for
a given valley and k. The two sites 0 and 1 correspond to the two layers. (c) Commensurate
unit cells corresponding to the commensurate misorientation angles.

conductance of a misoriented MoS2 interface as illustrated in Fig. 3.1(a).

In MoS2 bilayers, the low-energy electron transport takes place at the K valley,

and the low-energy hole transport takes place at the Γ valley. This results in an extremely

asymmetric response of the electron and hole interlayer conductivity to the interlayer mis-

orientation angle. The coherent interlayer electron transport is exponentially suppressed by

the misorientation, and the hole transport is only slightly affected.

3.2 Theoretical Methods

The structures considered are a 2H aligned bilayer and misoriented bilayers with

commensurate rotation angles. The commensurate unit cells are shown in Fig. 3.1(c), and

they are constructed following the method described in Ref. [35]. The rotation angles are

θ = 13.17◦, 21.78◦, and 27.79◦, and the corresponding unit cell lattice constants are
√

19a0,

16



√
7a0,

√
13a0 where a0 is the lattice constant of 2H aligned bilayer equal to 3.16 Å[36] .

The purpose of these DFT calculations is to determine the energy splitting of the

band edges resulting from the interlayer coupling. The DFT calculations are intentionally

performed in the absence of spin-orbit coupling (SOC) to cleanly extract the band splitting

from the interlayer coupling [37]. In the absence of SOC, the energy splitting ∆ν(k) of each

band ν at wavevector k due to the interlayer coupling tν⊥(k) is ∆ν(k) = 2|tν⊥(k)|. In the

basis of the eigenstates of the individual monolayers, the low-energy bilayer Hamiltonian

for each band ν is

H =

εν(k) tν⊥(k)

tν⊥(k) εν(k)

 (3.1)

where εν(k) is the low-energy two-dimensional dispersion of band ν.

The interlayer couplings are extracted from the energy splittings near the band

edge as illustrated in Fig. 3.2. A semi-log plot of the values versus supercell lattice constant

is shown in Fig. 3.3(a). It is clear from Fig. 3.3(a) that the interlayer coupling of the holes

at Γ are little affected by the misorientation angle. The interlayer couplings of the electron

and hole states at K and Σ are exponentially suppressed as a function of the supercell

lattice constant. This exponential dependence of the band splitting on the supercell lattice

constant is also found for the band splitting in rotated bilayer graphene [38].

Only the conduction K valley and the valence Γ valley are considered for calcu-

lating the low-energy electron and hole interlayer resistances, since HSE level calculations,

which provide more accurate values for energy levels, show that the conduction band K

valley lies approximately 130 meV below the conduction band Σ valley, and the valence

band Γ valley lies 200 meV or more above the valence band K valley. [13, 27, 36, 39]. Once
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we restrict our attention to the conduction K valley, which we will denote as Kc, and the

valence Γ valley, which we will denote as Γv, spin-orbit splitting has little effect on the

inter-layer transport, since the spin splitting of the conduction band at K is 1.5 meV and

the valence band at Γ is spin degenerate [40]. Since we are interested in the room temper-

ature conductance, we ignore the small spin splitting of the conduction band. To a very

good approximation, the low-energy bands within the plane (perpendicular to the transport

direction) are parabolic and isotropic [40]. For the transport calculations, we treat them as

parabolic using two masses, mx and my, such that ε(k) = h̄2|k|2
2m∗ with m∗ =

√
mxmy. The

values for the masses from DFT/HSE calculations for the holes at Γ are mx = my = 0.62m0

and for the electrons at K are mx = 0.47m0 and my = 0.45m0[41].

After extracting the interlayer coupling elements tν⊥ from the DFT calculations,

we calculate the interlayer conductance of the electron and hole bands using two different

methods described below. For low energies near a given valley minimum, the standard

2D-2D tunneling formula is

J =
gsgvq

hA
∑
k

∫
dE |t⊥(k)|2Au(k;E)Al(k;E)

· [f(E − Ef,u)− f(E − Ef,l)] (3.2)

where Au(k;E) is the spectral function of the upper layer, Al(k;E) is the spectral function

of the lower layer, t⊥(k) is the interlayer coupling determined from the band splitting,

f(E−Ef ) is the Fermi-Dirac factor, and Ef,u(l) is the Fermi level of the upper (lower) layer.

In the prefactor, A is the area, gs is the spin degeneracy, and gv is the valley degeneracy.

The standard 2D-2D tunneling formula can be obtained following the derivation leading to
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Figure 3.2: DFT calculated band structures of (a) unrotated bilayer and (b) 21.78◦ mis-
oriented bilayer MoS2 in the absence of SOC. The splittings of the bands due to interlayer
coupling are shown in the insets at the K points, and directly on the plots at the Γ points.
The interlayer coupling parameters tν⊥(k) are extracted from the DFT calculations of the
bilayer electronic bandstructures in the absence of spin orbit coupling.
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Figure 3.3: (a) Interlayer coupling t⊥ (meV) of the conduction band valleys at K and
Σ labeled Kc and Σc, and the valence band valleys at K and Γ labeled Kv and Γv. (b)
Interlayer resistivity (Ω·µm2) at the conduction (Kc) and valence (Γv) band edges. Both the
resistivity and the coupling are plotted versus the commensurate unit cell lattice constant
in units of the unrotated lattice constant a0. The corresponding angles are shown on the
upper horizontal axis. Numerical values for the data are given next to the data points.
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the current expression of Meir and Wingreen [42]

J =
gsgvq

hA

∑
~k

∫
dEtr{Γu(E; k)[f(E − µu)Al(E; k)

+ iG<l (E; k)]}. (3.3)

For the system shown in Fig. 1(a) of the main text, Al and G<l are the spectral function

and less-than correlation function of the lower layer, and Γu(E; k) = t2⊥(k)Au(k;E), where

Au(k;E) is the spectral function of the upper layer. In a tunneling Hamiltonian approach,

the two layers are assumed to be weakly coupled, so that each layer can be approximated

as equilibrated with its own Fermi level. Then, G<l (k;E) = if(E − µl)Al(k;E), and Eq.

(3.3) becomes

J =
gsgvq

hA

∑
k

∫
dE |t⊥(k)|2Au(k;E)Al(E; k)

· [f(E − µu)− f(E − µl)] . (3.4)

The spectral functions are given by Au(l) = γ

(E−ε(k))2+ γ2

4

= γ

E2
z+ γ2

4

where γ is the lifetime

broadening in each layer and in the second equality, we define Ez ≡ E − ε(k). Since the

interlayer coupling t⊥ is a weak function of k, we use its value at the band edge. Then, we

can perform the sum over the transverse momenta analytically, and Eq. (3.2) now has the

form

J =
gsgvq

h

m∗

2πh̄2

∫
dEz|t⊥|2Au(Ez)Al(Ez)

·
∫ ∞

0
dε [f(Ez + ε− Ef,u)− f(Ez + ε− Ef,l)] (3.5)

For small voltages, the difference in Fermi factors becomes −∂f∂ε qV where V is the applied

voltage, and the integral over ε gives f(Ez−Ef )qV where Ef is the equilibrium Fermi level.
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Therefore, the 2D-2D tunneling formula for the interlayer conductivity is

σ2D =
gsgvq

2

h

m∗

2πh̄2

∫
dEz
|t⊥|2γ2f(Ez − Ef )[

E2
z + γ2

4

]2 . (3.6)

All calculations of the electronic conductivity σ2D use a value of γ = 12.6 meV, and it is

estimated from the mobility lifetime using µ = eτ/m∗ and γ = h̄/τ . For the mobility, we

chose 200 cm2/Vs, which is an average of the best measured value for a monolayer of 81

cm2/Vs [43] and the theoretical value of 320 cm2/Vs [44].

For a given transverse k, the transmission resulting from this approach is T (E; k) =

|t⊥|2γ2[
(E−ε(k))2+ γ2

4

]2 which has a maximum value of 16 |t⊥|2 /γ2. Since this value must be ≤ 1,

it sets an upper limit on the expression’s validity in terms of the magnitude of the coupling

with respect to the broadening, |t⊥| ≤ γ/4 = 3.15 meV. For the Kc valley, the unrotated

structure does not satisfy this condition, since t⊥ = 7.6 meV; but for all non-zero rotation

angles, this condition is satisfied. For the Γv valley at all rotation angles, it is not.

To have an expression that is also valid for the strongly coupled bands, we create

a low-energy, 3D-3D transmission model for each band. Physically, this corresponds to a

system of two semi-infinite stacks with one stack rotated with respect to the other resulting

in the rotated interface depicted in Fig. 3.1(a). For each band, at each transverse k, this

model reduces to that of a one dimensional (1D) tight-binding chain as shown in Fig. 3.1(b).

The hopping parameter t0 is given by t⊥ of the unrotated bilayer in Fig. 3.2(a). For this

model, the ‘device’ consists of the two misoriented layers numbered 0 and 1 in Fig. 3.1(b).

The ‘device’ Hamiltonian for band ν is given by Eq. (3.1). The left and right self-energies
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due to coupling to the semi-infinite leads are ΣR = t0e
ikza. The Green function is

GR =

E − εν(k)− t0eikza −tν⊥(k)

−tν⊥(k) E − εν(k)− t0eikza


−1

. (3.7)

The transmission is calculated from T (E,k) = ΓuΓl|GR0,1(E,k)|2 where Γl = Γu = 2|t0| sin(kza).

Using the dispersion relation of the leads, E = εν(k) + 2t0 cos(kza), this can be analytically

evaluated to obtain T (Ez) =
t2⊥(4t20−E2

z )

(t20+t21)2−t2⊥E2
z

where Ez ≡ E − εν(k). Going through the same

steps as for the 2D-2D tunneling formula, the 3D-3D expression for the conductance is

σ3D =
gsgvq

2

h

m∗

2πh̄2

∫ 2t0

−2t0

dEz
t2⊥(4t20 − E2

z )f(Ez − Ef )

(t20 + t2⊥)2 − t2⊥E2
z

. (3.8)

In all calculations of the interlayer conductance, the Fermi level is taken to be kBT below

the conduction band edge when calculating the electron conductance or kBT above the

valence band edge when calculating the hole conductance, with T = 300K. The interlayer

resistivity ρ is the inverse of the conductivity calculated from Eqs. (3.6) or (3.8).

3.3 Results and Discussion

Fig. 3.3(b) shows the interlayer resistivity for electrons at the conduction band

edge at K and the holes at the valence band edge at Γ. The interlayer resistivity for holes

is only calculated from the expression for σ3D in Eq. (3.8), since the 2D-2D tunneling

formula is not valid for the holes due to the large value of |t⊥|. The interlayer resistivity

for electrons is calculated from both expressions, σ2D from Eq. (3.6) and σ3D, and the

trends and quantitative values from both expressions match to within a factor of three

over 3 orders of magnitude. The agreement is not too surprising since the conductivity
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resulting from both expressions is proportional to t2⊥, and the dependence of the electron

and hole interlayer conductivity follows the dependence of the interlayer coupling shown in

Fig. 3.3(a).

The physics of the interlayer coupling is determined by the periodic part of the

Bloch function (the orbital composition), the phase or envelope eik·r, and the interlayer

trigonal arrangement of the 3 nearest neighbor Mo atoms in one layer with respect to a Mo

atom in the other layer. We will first discuss the K valley and then the Γ valley.

First, consider the unrotated 2H bilayer. The very small interlayer coupling of

the conduction band is due the symmetry of the conduction band Bloch functions at the

K points. The conduction band edge at K is composed of predominantly Mo dz2 orbitals.

In a minimal basis, the Bloch state at the conduction band edge of an individual mono-

layer is |Kc〉 =
∑

Rn
|dz2 ; Rn〉eiK·Rn where Rn is the position of each Mo atom. The

conduction band interlayer coupling is proportional to the the interlayer matrix element

〈Kc, u|H|Kc, l〉 = 〈duz2 |H|d
l
z2〉

∑3
n=1 e

iK·Rn ∝
∑2

n=0 e
in2π/3 = 0 where 〈duz2 |H|d

l
z2〉 is the

matrix element between interlayer, nearest neighbor, Mo dz2 orbitals. Since the interlayer

matrix element 〈duz2 |H|d
l
z2〉 is independent of the azimuthal angle, it is pulled outside of the

sum, and the sum of the three phase factors exactly cancel. (For an expanded discussion,

see the Supplementary Information of [12].)

In contrast, the valence band state at K is composed of dxy and dx2−y2 orbitals.

The interlayer matrix elements between these orbitals change sign as a function of the

azimuthal angle preventing the cancellation of the phase factors. Therefore, at the K valley

of the unrotated structure, even though the conduction band orbitals are out-of-plane and
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the valence band orbitals are in-plane, the interlayer coupling at Kc is an order of magnitude

smaller than the interlayer coupling at Kv, as shown in Fig. 3.3(a).

Two mechanisms compete to determine the effect of interlayer rotation on the

conduction band coupling at K. When one layer is rotated with respect to the other, the

symmetry is broken, and the exact cancellation of the phases is destroyed. This effect would

cause the matrix element to increase. However, now the unit cell size has increased to one

of the supercells shown in Fig. 3.1, and the interlayer matrix elements between all of the dz2

orbitals in the supercell and their associated phase factors must be added. At K, the phase

is changing sign approximately every lattice constant, so that as the wavefunction of the

top layer is rotated with respect to that of the bottom layer, and the phases are summed

over the large supercell, the matrix element is suppressed by phase cancellation. These two

competing effects cause the initial slower decrease in the coupling of the conduction band

at K compared to the coupling of the valence band at K as shown in Fig. 3.3(a).

The effect of misorientation on the the interlayer resistivity of the electrons at K

is similar to the effect of misorientation on the interlayer resistivity of electrons and holes

in bilayer graphene [45, 38, 46]. The electron resistivity increases exponentially with the

size of the supercell lattice constant, although the increase in MoS2 is orders of magnitude

less than the increase in bilayer graphene (compare Fig. 1d of [38] or Fig. 4 of [46] with

Fig. 3.3(b)).

The valence band edge at Γ is composed of 28% S pz orbitals and 67% Mo dz2

orbitals[13]. These out-of-plane orbitals, especially the pz orbitals on the surface S atoms,

strongly couple between layers. Furthermore, the interlayer matrix elements are indepen-
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dent of the azimuthal angle, and at Γ, all of the phase factors are 1, so the matrix elements

add, and the interlayer coupling is large as shown in Fig. 3.3(a).

When one layer is rotated with respect to the other, no phase cancellation can

occur, since the Γ wavefunctions have no phase. Thus, the holes at Γ are minimally affected

by layer rotation. The only effect on the hole coupling is through the slight increase in

the interlayer separation causing a slight decrease in the interlayer coupling as shown in

Fig. 3.3(a). Furthermore, the interlayer coupling of the holes monotonically decreases with

angle rather than with supercell size, following the monotonic increase of the interlayer

distance (see Table S1), which further indicates that different physics govern the effect of

misorientation on the electron and hole interlayer coupling.

To gain perspective into what the resistivity values mean for a device application,

we consider the target resistivity value of 2.5 Ωµm2 for the emitter contact resistance re-

quired to achieve THz cutoff frequency in a heterostructure bipolar transistor (HBT) [47].

The interlayer resistivity of the holes is approximately equal to or below that value for all

angles. For all non-zero rotation angles considered, the interlayer resistivity of the electrons

is one or more orders of magnitude too high. This suggests design optimization of a het-

erostructure bipolar transistor (HBT) using stacked TMDs. A pnp HBT will be insensitive

to misalignment of the layers. Furthermore, rotating the emitter layer with respect to the

base layer in a pnp HBT will increase the emitter injection efficiency by one or more orders

of magnitude, since the transmission of electrons injected from the base will be suppressed

while the transmission of holes injected from the emitter will be unaffected.

With negligible recombination in the base, the ratio of the hole current to electron
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current, IE/IB, is the low-frequency gain β of the HBT, so that an increase in IE/IB is an

equivalent increase in β. In a circuit model, the interlayer resistance is in series with the

base-emitter diode, so that if the resistance of the base-emitter diode is much greater than

the interlayer reistance, the effect of changing the interlayer resistance is negligible.

To compare quantitative values, we consider the ac resistance of the junction for

the holes (rp) and electrons (rn) defined by rp = (∂IE/∂VEB)−1 and rn = (∂IB/∂VEB)−1,

respectively. In the on-state, IE = I0,Ee
VEB/VT and IB = I0,Be

VEB/VT where VT = kBT/q,

so that the ac resistances due to the pn junction are rp = VT /IE and rn = VT /IB. Now,

consider a homo junction BJT with an equally doped base and emitter, so that rn ≈ rp.

Such a device would traditionally have a gain < 1. Target high-frequency emitter current

densities [47] range from approximately 4.5 mA/µm2 to 36 mA/µm2 giving corresponding

values for rp of 5.8 Ωµm2 and 0.72 Ωµm2, respectively. The total resistance (junction

plus interface) seen by the holes is rp + Rpint and the total resistance seen by the electrons

is rn + Rnint. The ac hole current is iE = vEB/(rp + Rpint), the ac electron current is

iB = vEB/(rn +Rnint), and the ac gain is iE/iB = (rn +Rnint)/(rp +Rpint). Choosing values

from θ = 27.79◦ in Fig. 3.3(b), Rpint = 2.7Ωµm2, and Rnint = 250Ωµm2. If we take the least

aggressive value of rp = 5.8 Ωµm2, then iE/iB = 30. Thus, for high current density devices,

the asymmetrical electron and hole interface resistances due to interface rotation give an ac

gain of 30 for equal emitter and base doping in the absence of a heterojuction, and the value

increases as the current density increases. Such a result has previously only been possible

through the use of an emitter-base heterojunction consisting of a wider bandgap emitter

and a narrower bandgap base.
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Figure 3.4: A vertical pnp BJT with the emitter rotated with respect to the base. The flow
of electrons and holes are shown along with their interface resistances, Rnint and Rpint. The
pnp circuit symbol is shown at right.
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Chapter 4

Modeling of Tunable Lifshitz

Transitions and Multiband

Transport in Tetralayer Graphene

4.1 Introduction

In this work, we focus on numerical analysis of a relatively unexplored 2D multi-

Dirac band system, Bernal-stacked tetralayer graphene(4LG). Its band structure can be

decomposed into intersecting bilayer graphene (BLG)-like bands with light and heavy effec-

tive masses, which are hybridized at low energies due to next-nearest-layer hopping. The

hopping term γ3 between skewed lattice sites in adjacent layers gives rise to trigonal warp-

ing that persists to relatively large energies. The co-presence of both bands, combined

with trigonal warping, provides a tunable platform in which the Lifshitz transitions(LT)
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is readily accessible. Using tight binding calculations, multiband transport calculation, we

provide numerical analysis on dramatic features in transport characteristics, including non-

monotonic dependence of conductivity on charge density n and out-of-plane electric field D,

anomalous quantum Hall (QH) sequences and Landau level(LL) crossings. These features

are identified to arise from as many as six different changes in topology of Fermi contours

and multiband transport as n,D, and B are varied.

In this dissertation, we focus on the modeling and analysis of the results. Collab-

orative experimental results are published at PRL [2].

4.2 Transport properties

Figure 4.1(a) displays the longitudinal resistance R of 4LG as a function of n and

D in the absence of a magnetic field. At the charge neutrality point (CNP), R first increases

symmetrically with D, indicating the opening of a band gap due to the broken inversion

symmetry, then saturates at larger D >∼ ±220mV/nm [Fig. 4.1(b)]. This is consistent

with the theoretically predicted opening of a small band gap that saturates at ∼ 5meV for

large D [48].

A close examination of Fig. 4.1(a) reveals several rather surprising features. In

particular, what immediately sets it apart from thinner graphene devices is that, instead

of a single peak at the CNP, R(n) of 4LG exhibits three peaks, which are labeled as X,

Y , and Z, respectively [Fig. 4.1(c)]. The leftmost peak X is the most prominent, and

rightmost peak Z is present as a small shoulder. Such nonmonotonic R(n) behavior points

to the underlying multibands of tetralayer graphene that are more complex than its thinner
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Figure 4.1: (a) Longitudinal resistance map R(n,D) in log scale at B = 0. The unit is kΩ.
(b) Line trace R(D) at the CNP. (c)(d) Line traces R(n) at D = 0 (c), −200 [(d), red] and
−125 (d, blue) mV/nm, respectively. The traces are offset by 0.2kΩ for clarity in (d). The
black arrows indicate the peaks and the CNP. (e) Differentiated simulated dR/dn(n,D)
using Boltzman transport theory at the same charge density as (a).

graphene counterparts [4, 6, 49, 50, 51, 52, 53]. In fact, the charge neutrality point (CNP),

as determined from the peak in R at large D, is not located at any of the three peaks

at D = 0. Instead, it corresponds to a local resistance minimum located between peaks

X and Y [Fig. 4.1(c)]. This identification of the CNP with a local resistance minimum

represents yet another ‘deviation’ from the standard behaviors of monolayer, bilayer, and

trilayer graphene devices, where the CNP is invariably associated with a resistance peak

[4, 6, 49, 51, 53, 54]. Another unexpected feature is the intricate dependence of the peaks on

D: as |D| increases, peak X appears to move to larger charge density, while peak Z splits

into two peaks Z1 that is relatively stationary in D, and Z2 that moves linearly with D.

The movement of the peaks X and Z2 can be clearly seen in line traces R(n) at D = −125
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and −200mV/nm [Fig. 4.1(d)].

For modeling of the transport properties, we use Boltzmann transport theory. In

Boltzmann transport theory, the conductivity can be written as a sum of intraband and

interband contributions[26]:

σxxintra = e2τ
∑
n

∫
BZ

1

(2π)2
dθkdk|〈nk| ∂H

∂kx
|nk〉|2(−∂fnk

∂εnk
) (4.1)

σxxinter = ie2h̄
∑
n,m 6=n

∫
BZ

1

(2π)2
dθkdk

fmk − fnk
εnk − εmk

〈nk| ∂H∂kx |mk〉〈mk| ∂H∂kx |nk〉
εnk − εmk + ih̄τ−1

(4.2)

where the εnk and fnk are the energy and Fermi-Dirac distribution function of band n with

wave vector k. We treat the relaxation time τ as an independent parameter and assume

that τ is the same for both intraband and interband scattering mechanisms[26].

4.3 Band structures with topology analysis

For the analysis of ABAB stacked tetralayer graphene from band structure per-

spective, a tight binding model calculation is carried out. The Hamiltonian in the vicinity

of the Kξ valley is:

32



H =



eD·d
2 vπ† −v4π

† v3π
γ2
2 0 0 0

vπ δ + eD·d
2 γ1 −v4π

† 0 γ5
2 0 0

−v4π γ1 δ + eD·d
6 vπ† −v4π γ1

γ5
2 0

v3π
† −v4π vπ eD·d

6 v3π
† −v4π 0 γ2

2

γ2
2 0 −v4π

† v3π − eD·d
6 vπ† −v4π

† v3π

0 γ5
2 γ1 −v4π

† vπ δ − eD·d
6 γ1 −v4π

†

0 0 γ5
2 0 −v4π γ1 δ − eD·d

2 vπ†

0 0 0 γ2
2 v3π

† −v4π vπ − eD·d
2



(4.3)

where the D is the vertical electric field, d is the thickness of tetralayer graphene, ξ is the

valley index, and π = ξpx + ipy is the momentum operator. The Fermi velocity of graphene

is v =

√
(3)aγ0
2h̄ , and the related velocities are v3 = γ3

γ0
v, v4 = γ4

γ0
v.

The hopping parameters are extracted by matching the LL crossing points between

experimental data R(n,B) over a wide range of B at D = 0 and LL spectra that are

calculated using a k ·p continuum model. Figure 4.2(b) displays the three-dimensional (3D)

band structure and its 2D projection at D = 0, respectively. At higher energies, the bands

are well approximated by two intersecting BLG-like bands with different effective masses.

The band structure calculated by ignoring the off-diagonal blocks in the Hamiltonian is

plotted as the dotted lines in Fig. 4.2(b), showing the outlines of the intersecting bands.

At low energies, the next-nearest-neighbor hoppings hybridize the bands [solid

lines, Fig. 4.2(b)]. In particular, as a result of the skewed hopping term γ3, trigonal

warping significantly distorts the band structure [55, 56, 57, 58] as we tune the Fermi level
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Figure 4.2: (a)(b) Calculated 3D band structure and its 2D projection E(kx) at ∆ = 0,
respectively. In (b), the inset displays the overlap of conduction and valance bands at the
CNP. Horizontal dashed lines indicate the energy levels corresponding to the Lifshitz tran-
sition points. The red solid and dotted lines are calculated by taking the full Hamiltonian
and neglecting the off-diagonal block in the Hamiltonian, respectively. (c) A series of cross
sections of band structure showing evolution of the Fermi surfaces by tuning Fermi energy
at ∆ = 0. (d)(e) Calculated 3D band structure and 2D projection E(kx) at ∆ = 25mV .
A band gap at the CNP is opened, and the accidental degeneracy at the intersecting point
between two BLG-like bands is broken. The dashed black lines in (e) indicate the energy
levels corresponding to the Lifshitz transition points. (f) Evolution of Fermi surfaces at
∆ = 25mV as a function of Fermi energy.

EF of 4LG by gating, the topology of the Fermi surfaces changes, leading to anomalies in

the resistance. A series of cross sections of the band structure showing the Fermi surface

evolution is plotted in Fig. 4.2(c). For instance, at the CNP, 4LG is a semimetal with

overlapping conduction and valence bands [Fig. 4.2(b), inset]; its Fermi surface consists

of three elongated pockets of holes and three circular pockets of electrons, which occupy

the edges and vertices of a triangle, respectively. These pockets of electrons and holes are

isolated from one other. As more holes enter the device, the electron pockets disappear

while the three disjoint hole pockets expand. When EF is lowered past the point at which
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the light mass and heavy mass bands intersect, E = −10meV , the Fermi surface morphs

from a doubly connected triangle with a hole in the center to a singly connected triangle.

This abrupt change in the topology of the Fermi surface is reflected in the R(n,B) data,

and is associated with the resistance peak X in Fig. 4.1. Similarly, when EF increases from

the CNP to ∼ 4.6meV , the resistance peak Y accompanies the LT as the topology of the

Fermi surface evolves from three disjoint pockets of electrons to a doubly connected triangle;

with a further increase of EF to 10meV , the Fermi surface evolves into a singly connected

triangle with the presence of both BLG-like bands, giving rise to the resistance peak Z.

These energies are labeled εX , εY , and εZ in Fig. 4.2(b), respectively. In other words,

each of the three peaks in resistance, as well as the minimum at the CNP, are associated

with distinct LTs as the Fermi energy varies.

Upon the application of an interlayer potential difference ∆, 4LG’s inversion sym-

metry is broken, leading to nontrivial modification of the band structure. For instance,

for ∆ > 20 mV, a small band gap opens, giving rise to the observed high resistance at

the CNP. Figures 4.2(d)-4.2(e) plot the 3D band structure and 2D E(kx) at ∆ = 25mV ,

respectively, while Fig. 4.2(f) plots the evolution of Fermi surfaces at ∆ = 25mV . Note

that ∆ denotes the actual potential bias across the 4LG; because of screening, it is typically

much smaller than that imposed by external gates Dd, where d ∼ 1nm is the separation

between the outmost layers. The Lifshitz transition persists at finite ∆-when EF moves

away from conduction and valence band edges the topology of the Fermi surface changes

from three disjoint pockets to a hollow triangle, to finally a singly connected triangle.

Another important effect of ∆ is the lifting of the accidental degeneracies at εZ
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and εX , as it causes the light-mass bands to split away from zero energy. In other words,

the two intersecting BLG-like bands at ∆ = 0 split into two subbands, with energetic

separations that approximately scale with ∆. Alignment of the Fermi level with the edges

of the second subbands, which host electrons with very low velocities, provide additional

channels for scattering, thus leading to the resistance peaks at the corresponding charge

densities; i.e., this degeneracy breaking by ∆ = 0 gives rise to the split peaks Z1 and Z2

in the electron-doped regime, and X in the hole-doped regime. Quantitatively, we use the

Boltzmann transport theory to calculate 4LG’s resistivity as a function of n and interlayer

potential ∆, as shown in Fig. 4.1(e). The simulation satisfactorily reproduces the major

features in the data. To account for the local minimum resistance at the CNP, we take the

interband scattering between conduction and valance bands into account, which produces

a local resistivity minimum near n = D = 0, suggesting that such interband scattering may

play an important role in the transport of 4LG, particularly at the CNP.
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Chapter 5

Edge States in Trilayer Graphene

Nanoribbons

5.1 Introduction

Since the exfoliation of first monolayer graphene, graphene has attracted great

interest in its electronic properties and in its ability to serve as a platform for rich physics

[4, 5, 6]. The quantum hall states including integer quantum hall state, fractional quantum

hall state, and the quantum spin hall state have all been well studied both experimentally

and theoretically in monolayer graphene or bilayer graphene [5, 50, 51, 52, 53, 54, 55]. Re-

cently, there has been interest in the quantum mirror hall state in trilayer graphene because

of its unique structure symmetry [53, 59]. The interplay between the electric field and

the magnetic field in a trilayer graphene nanoribbon modifies the bulk and edge states of

the system. As seen in experiments [60], the change in band structures will result in four
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different quantum phases(including a quantum parity Hall state, a quantum mirror Hall

ferromagnetic metal, a quantum valley Hall(QVH) insulator, and layer polarized insulator

states) with different conducting behavior. For the novel quantum parity Hall(QPH) ef-

fect, boundary channels are distinguished by even or odd parity under the system’s mirror

reflection symmetry, which can be found in ABA-stacked trilayer graphene at the charge

neutrality point.

For the measurement of two-probe longitudinal conductances σxx in experiements

with approximate ballistic conductance as shown, quantized conductance is first realized at

low B⊥ where σxx = 4e2/h establishing the presence of four edge channels traveling from

source to drain. As B⊥ increases the quantized conductance decreases first to σxx = 2e2/h

and then to small values.

Figure 5.1: (a) Schematics of hBN-encapsulated TLG device. (b) Phase diagram
σxx(E⊥, B⊥) at the CNP and T = 260mK. The different electronic phases are labeled
I through IV .

In trilayer graphene, the electronic bands can be decoupled into a combination

of bilayer-like bands and dirac-like bands, and with mirror symmetry, the system exhibits

quantized longitudinal conductance at the charge neutrality point, due to counterpropa-

gating even and odd parity edge modes [3, 59]. Here we used a tight binding model to
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investigate more of the properties of edge states in trilayer graphene nanoribbons and pro-

vide insight into quantum mirror hall states and their dependence on electric field and

magnetic field as observed in experimental results from collaborating groups.

5.2 Tight banding calculations

In the absence of external bias, the band structure of the trilayer graphene consists

of monolayer-like and bilayer-like bands in a new basis of {A1−A3√
2
, B1−B3√

2
, A1+A3√

2
, B2, A2,

B1+B3√
2
}

[25]. In the new basis, the sum of two terms, H0 +H∆2 acquires a block-diagonal structure:

H0 +H∆2 =

HSLG 0

0 HBLG

 (5.1)

where the monolayer-like and bilayer-like blocks are defined as

HSLG =

∆2 − γ2
2 v0π

†

v0π −γ5
2 + δ + ∆2

 (5.2)

HBLG =



∆2 + γ2
2

√
2v3π −

√
2v4π

† v0π
†

√
2v3π

† −2∆2 v0π −
√

2v4π

−
√

2v4π v0π
† δ − 2∆2

√
2γ1

v0π −
√

2v4π
† √

2γ1 ∆2 + γ5
2 + δ


(5.3)

The effective Hamiltonian of the bilayer-like part can be simplified further by noting that

the low-energy states predominantly reside on A1 + A3 and on B2 sublattices. Then the

effective 2× 2 Hamiltonian of the bilayer-like band:

HBLG ≈ H(0)
BLG +H

(1)
BLG (5.4)
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H
(0)
BLG = − 1

2m

 0 π†
2

π2 0

 (5.5)

H
(1)
BLG =

√
2v3

 0 π

π† 0

+

γ2
2 + ∆2 0

0 −2∆2

+
v2

2γ1

(δ − 2∆2)π†π 0

0 (γ52 + δ + 2∆2)ππ†


(5.6)

In our practical simulations, as presented in chapter 2, with Slonszewski-Weiss-

McClure parameters, a rectangular unit cell with atoms

{A1, B1, A2, B2, A3, B3, A
′
1, B

′
1, A

′
2, B

′
2, A

′
3, B

′
3} (5.7)

is chosen for modeling instead of regular unit cell. Moreover, to calculate the bands, the

total Hamiltonian matrix is divided into small parts as αu, β0, β1, β2 and t. They are

Hamiltonians of unit cell blocks and interactions between blocks. For different nanoribbon

edges, different α(Hamiltonian of supercell) and β(interations between supercells) are con-

structed accordingly. In order to decouple even and odd bands when no electric field is

applied, a transformation matrix M is used to change the basis. Finally, the Hamiltonian

is H(k) = α+ β
′
e−ka + βeka.

With applied perpendicular B-field (0, 0, Bz), a vector potential (−Bzy, 0, 0) or

(0,−Bzx, 0) is used accordingly based on the edge. The Peierls phase factor and the inter-

actions will be calculated accordingly. The electrical potential ∆E⊥ will change the diagonal

elements of the Hamiltonian.
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5.3 Results and Discussion

For trilayer graphene, the electronic bands could be decoupled into a combination

of bilayer-like bands and dirac-like bands as below. The relative positions of bands are well

examined and used for parameter tuning.

Figure 5.2: Bands of trilayer graphene decoupled into monolayer-like(red) and bilayer-
like(blue) bands.

Edge states in zigzag and armchair edge nanoribbons share similar properties

within magnetic field. Thus, we take the calculation results of zigzag edge trilayer graphene

nanoribbon with width of about 200nm as an example. From Fig. 5.3(a), under magnetic

field B⊥ = 8T and E⊥ = 0, the bands of the nanoribbon are decoupled into odd and

even parity bands. At low energy, the wave functions for the decoupled bands in the solid

box in Fig. 5.3(a) are {B1−B3√
2
, A1−A3√

2
, B2,

A1+A3√
2
}, and they are counter propagating in

separate channels. With a external electric field E⊥ of 30meV between layers, the wave

functions become hybridized and the energies are slightly shifted. Here, ∆E⊥ is the

potential difference induced by vertical electric field and is simplified as E⊥.

Since the mirror symmetry is now broken, Fig. 5.3(b) shows small gaps appearing at the
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band crossings. The change of the bands are small, while the gap and state hybridization

changes abruptly with symmetry. With a finite displacement field, backscattering between

counter propagating states becomes allowed, and thus the conductance quickly reduces to

a small value as observed in experimental data.

Figure 5.3: Bands of zigzag edge trilayer graphene nanoribbon with and without external
electric field E⊥.

Our simulation results also provide insight into the trends of the change of the

relative positions of the bands and their dependence on different external electric and mag-

netic field. For an electric field, the Hamiltonian introduced by E⊥ is ∆H = (E⊥|A1〉〈A1|+

E⊥|B1〉〈B1|) − (E⊥|A3〉〈A3| + E⊥|B3〉〈B3|). For low energy bands, |A1−A3√
2
〉 and |B1−B3√

2
〉

are odd parity states, and |A1+A3√
2
〉 and B2 are even parity states. Thus ∆H will has little

effect on even parity bands and more effect on odd parity bands, which is consistent with

our simulation results as in Fig. 5.4(A) where the odd parity bands change linearly as a

function of E⊥.

With external magnetic field B⊥, the Landau levels of even parity bands become

degenerate because of higher Landau levels hybridization. For the bands with higher order

Landau level components, the dependence of the band energies is almost linear as seen in
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Figure 5.4: Changes of bands of zigzag edge trilayer graphene nanoribbon in dependence of
electric field E⊥ and magnetic field B⊥.

bilayer graphene, which is also consistent with literature and theory [61].

The simulations also demonstrate the mechanisms behind the phase transitions,

which includes exchange interactions with the underlying Fermi sea that favor an ordinary

insulator ground state at strong B⊥ and a spin-polarized intermediate state and vary-

ing Zeeman energy. Successively, for phase I(quantum parity Hall), the approximately

spin-degenerate counter-propagating edge states are protected against backscattering by an

underlying crystalline symmetry, since they correspond to different representations of the

mirror reflection symmetry of the TLG crystal lattice that is preserved at E⊥ = 0. For

phase II(quantum mirror Hall ferromagnetic metal), it has counterpropagating edge states

with opposite spin and opposite parity caused by a change of bands, which are modified by

an external magnetic field and Coulomb interactions. For even larger B⊥, when both spin

polarizations of the former are occupied and both spin polarizations of the latter are empty,

there are no longer counter- propagating edge states, as all the even-parity electron LLs

are above the odd-parity hole LLs, there will be a phase transition from phase II to phase

III(QVH insulator). Thus, these phases arise from an intricate interplay between spin and
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crystalline symmetries, localization, Zeeman energy, exchange interactions and self-energies

of bands with different parities.
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Chapter 6

Conclusions

The critical findings are summarized as follows:

• In misoriented MoS2, the interlayer electron resistivity changes by 4 to 5 orders of

magnitude as a function of the interlayer twist angle, and it scales exponentially with

the size of the commensurate unit cell. The physics is the same as that governing

the interlayer transport in rotated bilayer graphene. The wave functions at K have a

rapidly varying phase. When the layers are rotated, there is strong quantum interfer-

ence between the wave functions in the two layers resulting in destructive interference

and exponentially reduced transmission and conductance. The hole resistivity at Γ

is unaffected by rotation. The holes at Γ have no phase, so there is no quantum

interference, and the interlayer hole transport is unaffected by rotation between the

layers;

• Bernal-stacked 4LG is a highly tunable system with a single element, which con-

stitutes an ideal platform for exploring the Lifshitz transition that is manifest as a
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nonmonotonic dependence of conductivity on the charge density n and out-of-plane

electric field D, anomalous quantum Hall sequences and Landau level crossings that

evolve with n, D, and B;

• With tight binding modeling, we provide analysis to explain the rich phase diagram

including Quantum Parity(Mirror) Hall at the charge neutrality point in ABA-stacked

TLG; and the intricate interplay between spin and crystalline symmetries, localization,

Zeeman energy, exchange interactions and self-energies of bands with different parities

for more insight on further experimental work.
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Appendices

A DFT calculation for misoriented MoS2

Electronic structure calculations of bilayer MoS2 are carried out using density

functional theory (DFT) with a projector augmented wave method and the Perdew-Burke-

Ernzerhof (PBE) type generalized gradient approximation as implemented in the Vienna

Ab initio Simulation Package (VASP) [62, 63, 64, 65, 66]. A semi-empirical Grimme-D2

correction to the Kohn-Sham energies is used to model the van der Waals (vdW) interactions

[67]. Spin-orbit coupling is not included, since it has little effect on the interlayer coupling

parameter, which is determined by orbital overlap. The plane wave basis energy cutoff is 400

eV. The global break condition for the electronic SC-loop is below 10−6 eV. The Monkhorst-

Pack scheme is used for the integration over the Brillouin zone with a Γ centered k-mesh of

12×12×1 for the unrotated thin films. For rotated bilayers, k-mesh are accordingly revised

to 3×3×1 for 13.17◦, 6×6×1 for 21.78◦, 4×4×1 for 27.79◦, since they have different Brillouin

zones. The k-space integration was carried out with a Gaussian smearing width of 0.02 eV

for all calculations. All unit cells were built with 20 Å separation between replicas in the

perpendicular direction to achieve negligible interaction. The default optimization methods

did not efficiently determine the bilayer separation because the van der Waals interaction

energies are very small. In order to accurately determine the bilayer separation of each

system, several specific layer separations were used to optimize the structures until all or

the interatomic forces are below 0.01 eV/Å as described in the Supplementary Information

of [29]. The optimized structure with lower total energy was chosen for structure of each
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Angle θ a/a0 d (Å) EΓ−K(eV) EK−K(eV)

2H(0) 1.0 6.2568 1.3650 1.7348

13.17◦
√

19 6.5142 1.5279 1.7683

21.78◦
√

7 6.5287 1.5339 1.7669

27.79◦
√

13 6.5853 1.5617 1.7698

Table S1: Interlayer distance (d), supercell lattice constant a, indirect energy gap EΓ−K ,
and direct gap EK−K as a function of rotation angle.

rotated angle. The interlayer distances of the relaxed structures are shown in Table S1.
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B Codes and scripts for modeling

The codes and scripts used for all the projects can be found in my github [68].

Here are main MATLAB codes for modeling of edge states in trilayer graphene nanoribbon

for future reference:

For Peierls phase factor:

1 % If added constant Bz magnetic field, change hamiltonian components:

2 Bz = input('Magnetic field Bz: ');

3 Basis = input('Basis used(1 for odd&even;2 for mixed): ');

4

5 % ignore z positions for calculation

6 A1 = [0,0];

7 B1 = [-1/2,sqrt(3)/2]*a;

8 A1 p = [3/2,sqrt(3)/2]*a;

9 B1 p = [1,0]*a;

10 A2 = [-1/2,sqrt(3)/2]*a;

11 B2 = [-1,0]*a;

12 A2 p = [1,0]*a;

13 B2 p = [1/2,sqrt(3)/2]*a;

14 A3 = [0,0];

15 B3 = [-1/2,sqrt(3)/2]*a;

16 A3 p = [3/2,sqrt(3)/2]*a;

17 B3 p = [1,0]*a;

18

19 Xlist = a*[0,-1/2,3/2,1,-1/2,-1,1,1/2,0,-1/2,3/2,1];
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20 Ylist = a*[0,sqrt(3)/2,sqrt(3)/2,0,sqrt(3)/2,0,\\

21 0,sqrt(3)/2,0,sqrt(3)/2,sqrt(3)/2,0];

22 Alpha 1 = kron(diag(ones(1,NW)),alpha)+kron(diag(ones(1,NW- ...

1),1),beta0')+kron(diag(ones(1,NW-1),-1),beta0);

23 Beta plus 1 = kron(diag(ones(1,NW)),t')+kron(diag(ones(1,NW- ...

1),1),beta2')+kron(diag(ones(1,NW-1),-1),beta1);

24 Alpha 2 = kron(diag(ones(1,NW)),alpha)+kron(diag(ones(1,NW- ...

1),1),t)+kron(diag(ones(1,NW-1),-1),t');

25 Beta plus 2 = kron(diag(ones(1,NW)),beta0')+kron(diag(ones(1,NW- ...

1),1),beta1')+kron(diag(ones(1,NW-1),-1),beta2');

26

27 %Armchair Structure for GNR

28 if ((type == 1)&&(device == 1))

29 Alpha = Alpha 1;

30 Beta = Beta plus 1;

31 elseif ((type == 2)&&(device == 1))

32

33 %Zigzag Structure for GNR

34 Alpha = Alpha 2;

35 Beta = Beta plus 2;

36 elseif ((type == 1)&&(device == 2))

37 end

38

39 l1 = sqrt(3)*a;

40 l2 = 3*a;

41

42 if (type == 1)
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43

44 fprintf('using gauge1 \n');

45 % Modify alpha

46 for i = 1:NU*NW

47 for j = 1:NU*NW

48 ii = floor((i-0.5)/NU);

49 jj = floor((j-0.5)/NU);

50 y i = Ylist(i-ii*NU)+ii*l1;

51 y j = Ylist(j-jj*NU)+jj*l1;

52 x i = Xlist(i-ii*NU);

53 x j = Xlist(j-jj*NU);

54 %dx = dcell alpha(1);

55 Alpha(i,j) = ...

Alpha(i,j)*exp(1i*q*(-Bz)*(y i+y j)/2*(x i-x j)/hbar*AtoMˆ2);

56 end

57 end

58

59 % Modify beta

60 for i = 1:NU*NW

61 for j = 1:NU*NW

62 ii = floor((i-0.5)/NU);

63 jj = floor((j-0.5)/NU);

64 y i = Ylist(i-ii*NU)+ii*l1;

65 y j = Ylist(j-jj*NU)+jj*l1;

66 x i = Xlist(i-ii*NU);

67 x j = Xlist(j-jj*NU);

68 %dx = dcell beta1(1);
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69 Beta(i,j) = Beta(i,j)*exp(1i*q*(-Bz)*(y i+y j)/2*(x i-x j+l2)\\

70 /hbar*AtoMˆ2);

71 end

72 end

73

74 else

75

76 fprintf('using gauge2 \n');

77 % Modify alpha

78 for i = 1:NU*NW

79 for j = 1:NU*NW

80 ii = floor((i-0.5)/NU);

81 jj = floor((j-0.5)/NU);

82 y i = Ylist(i-ii*NU);

83 y j = Ylist(j-jj*NU);

84 x i = Xlist(i-ii*NU)+ii*l2;

85 x j = Xlist(j-jj*NU)+jj*l2;

86 %dy = dcell alpha(2);

87 Alpha(i,j) = ...

Alpha(i,j)*exp(1i*q*(-Bz)*(x i+x j)/2*(y i-y j)/hbar*AtoMˆ2);

88 end

89 end

90

91 % Modify beta

92 for i = 1:NU*NW

93 for j = 1:NU*NW

94 ii = floor((i-0.5)/NU);
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95 jj = floor((j-0.5)/NU);

96 y i = Ylist(i-ii*NU);

97 y j = Ylist(j-jj*NU);

98 x i = Xlist(i-ii*NU)+ii*l2;

99 x j = Xlist(j-jj*NU)+jj*l2;

100 %dy = dcell beta2(2);

101 Beta(i,j) = Beta(i,j)*exp(1i*q*(-Bz)*(x i+x j)/2*(y i-y j+l1)\\

102 /hbar*AtoMˆ2);

103 end

104 end

105

106 end

107

108 % Hamiltonian:

109 H = kron(diag(ones(1,NL)),Alpha)+kron(diag(ones(1,NL- ...

1),1),Beta)+kron(diag(ones(1,NL-1),-1),Beta');

For non-equilibrium Green function transport calculation:

1 % Hamiltonian:

2 H = kron(diag(ones(1,NL)),Alpha)+kron(diag(ones(1,NL- ...

1),1),Beta)+kron(diag(ones(1,NL-1),-1),Beta');

3

4 %Define Energy grid for calculation of Transmission

5 E = linspace(-1,1,51);

6 %Define the matrices for NEGF

7 T = zeros(1,length(E));
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8 green1 = inv(E(1)*eye(NW*NU)-Alpha);

9 green2 = inv(E(1)*eye(NW*NU)-Alpha);

10 Es = zeros(NT);

11 Esin = zeros(NT);

12 fprintf(1,'Done\n');

13

14 %% NEGF Calculations

15 fprintf(1,'Running NEGF...please wait\n')

16 fprintf(1,'Energy range = %d eV to %d eV\n',min(E),max(E));

17 fprintf(1,'%s\n',['[',blanks(length(E)),']']);

18 fprintf(1,' ');

19

20 %Run for each energy

21 for k = 1:length(E)

22 %Calculate surface GFs self consistently

23 %Calculate for beta'

24 err = 100;

25 while(err>errmax)

26 g1new = inv((E(k)+zplus)*eye(NW*NU)-Alpha-Beta'*green1*Beta);

27 err = (sum(sum(abs(g1new-green1))))/(sum(sum(abs(g1new+green1))));

28 green1 = g1new;

29 end

30 sigma1 = Beta'*green1*Beta;

31 %Calculate for beta

32 err = 100;

33 while(err>errmax)

34 g2new = inv((E(k)+zplus)*eye(NW*NU)-Alpha-Beta*green2*Beta');

54



35 err = (sum(sum(abs(g2new-green2))))/(sum(sum(abs(g2new+green2))));

36 green2 = g2new;

37 end

38 sigma2 = Beta*green2*Beta';

39 %Calculate self energy matrices

40 E1 = kron(diag([1 zeros(1,NL-1)]),sigma1);

41 E2 = kron(diag([zeros(1,NL-1) 1]),sigma2);

42 %Calculate broadening

43 G1 = 1i*(E1-E1');

44 G2 = 1i*(E2-E2');

45 %Calculate G, Gn, A, T for coherent transport

46 % G = inv((E(k)+1i*etaplus)*eye(NT)-H-E1-E2);

47 % T(k) = real(trace(G1*G*G2*G'));

48 % Gn = f1*(G*G1*G')+f2*(G*G2*G');

49 % A = i*(G-G');

50 %Calculate G, Gn, A, T self consistently including the phase breaking ...

processes

51 err = 100;

52 while(err>errmax)

53 G = inv((E(k)+zplus)*eye(NT)-H-E1-E2-Es);

54 Esnew = D*G;

55 err = sum(sum(abs(Esnew-Es)))/sum(sum(abs(Esnew+Es)));

56 Es = Esnew;

57 end

58

59 % err = 100;

60 % while(err>errmax)
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61 % Gn = f1*(G*G1*G')+f2*(G*G2*G')+(G*Esin*G');

62 % Esinnew = D*Gn;

63 % err = sum(sum(abs(Esinnew-Esin)))/sum(sum(abs(Esinnew+Esin))); ...

Esin = Esinnew;

64 % end

65 % A=i*(G-G');

66 T(k) = real(trace(G1*G*G2*G'));

67 fprintf(1,' |');

68 end

69

70 fprintf(1,'\n');

71 fprintf(1,'NEGF part Done\n');
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